

Why Should I Care About Networking?

Ivan Pepelnjak (ip@ipSpace.net)
Network Architect

ipSpace.net AG

Who is Ivan Pepelnjak (@ioshints)

Past

- Kernel programmer, network OS and web developer
- Sysadmin, database admin, network engineer, CCIE
- Trainer, course developer, curriculum architect
- Team lead, CTO, business owner

Present

Network architect, consultant, blogger, webinar and book author

Focus

- Large-scale data centers, clouds and network virtualization
- Scalable application design
- Core IP routing/MPLS, IPv6, VPN

Fallacies of Distributed Computing

- The network is reliable.
- Latency is zero.
- Bandwidth is infinite.
- The network is secure.
- Topology doesn't change.
- There is one administrator.
- Transport cost is zero.
- The network is homogeneous.

Peter Deutsch (1994)

1 SECOND CLICK-TO-SCREEN YEAH, NO BIG DEAL

This Is Why You Need the Details

- TCP session established with a 3-way handshake
- RTT delay before first user data is sent

Does It Really Matter? We're Not in Antarctica

```
$ ping www.nil.com
Pinging www.nil.com [192.168.253.10] with 32 bytes of data:
Reply from 192.168.253.10: bytes=32 time=8ms TTL=253
Reply from 192.168.253.10: bytes=32 time=8ms TTL=253
Reply from 192.168.253.10: bytes=32 time=8ms TTL=253
Reply from 192.168.253.10: bytes=32 time=9ms TTL=253
```

Fiber Internet access

```
$ ping www.nil.com
Pinging www.nil.com [193.110.145.49] with 32 bytes of data:
Reply from 193.110.145.49: bytes=32 time=369ms TTL=244
Reply from 193.110.145.49: bytes=32 time=282ms TTL=244
Reply from 193.110.145.49: bytes=32 time=409ms TTL=244
Reply from 193.110.145.49: bytes=32 time=267ms TTL=244
Reply from 193.110.145.49: bytes=32 time=242ms TTL=244
Reply from 193.110.145.49: bytes=32 time=223ms TTL=244
Reply from 193.110.145.49: bytes=32 time=178ms TTL=244
Reply from 193.110.145.49: bytes=32 time=167ms TTL=244
Reply from 193.110.145.49: bytes=32 time=193ms TTL=244
Reply from 193.110.145.49: bytes=32 time=136ms TTL=244
Reply from 193.110.145.49: bytes=32 time=249ms TTL=244
Reply from 193.110.145.49: bytes=32 time=228ms TTL=244
Reply from 193.110.145.49: bytes=32 time=193ms TTL=244
Reply from 193.110.145.49: bytes=32 time=167ms TTL=244
```

3G mobile access over Bluetooth

Remember: Latency is never zero. It could be higher than expected

1 Second Click-to-Screen Is Extremely Hard

Data Communications and Onions

Things Like NAT and Firewalls Will Trip You Up

TCP/IP: Broken By Design

- Session layer is missing (session endpoints tied to IP addresses)
- IP addresses are visible to applications (no L3-L7 abstraction)
- DNS is an optional add-on application

© ipSpace.net 2015

Socket API: Broken By Design

Ideal

conn = Network.Connect("example.com","http")

TBD

OK

conn = new Socket("example.com",80)

Java

Broken

```
Socket API
memset(&hints, 0, sizeof(hints));
hints.ai family = PF UNSPEC;
hints.ai socktype = SOCK STREAM;
error = getaddrinfo("example.com", "http", &hints, &res0);
if (error) { errx(1, "%s", gai strerror(error)); }
s = -1;
for (res = res0; res; res = res->ai next) {
        s = socket(res->ai family, res->ai socktype, res->ai protocol);
        if (s < 0) { cause = "socket"; continue; }</pre>
        if (connect(s, res->ai addr, res->ai addrlen) < 0) {</pre>
                cause = "connect";
                close(s);
                s = -1;
                continue;
        }
        break; /* okay we got one */
if (s < 0) { err(1, "%s", cause); }
```

Consequences of Broken TCP/IP Stack & API

- Every application reinvents the wheel (sometimes badly)
- New network/transport protocols are a royal pain (see: IPv6) and require application changes
- Endpoint mobility is hard to implement (network-layer addresses have to move)
- No automatic transport/network protocol selection
- No load balancing across multiple endpoint addresses
- No automatic session reconnect

The Consequences of Just Good Enough

With sufficient thrust, pigs fly just fine. However, this is not necessarily a good idea. It is hard to be sure where they are going to land, and it could be dangerous sitting under them as they fly overhead.

RFC 1925, Section 2.3

The Perils of Ignoring the History

Every old idea will be proposed again with a different name and a different presentation, regardless of whether it works.

RFC 1925, Section 2.11

It Will Take Time

No matter how hard you try, you can't make a baby in much less than 9 months.

RFC 1925, Section 2.2a

Practice Makes Perfect

Some things in networking can never be fully understood by someone who neither builds commercial networking equipment nor runs an operational network.

RFC 1925, Section 2.4

Stay in Touch

Web: ipSpace.net

Blog: blog.ipSpace.net

Email: ip@ipSpace.net

Twitter: @ioshints

SDN: ipSpace.net/SDN

Webinars: ipSpace.net/Webinars

Consulting: ipSpace.net/Consulting