
TCP, HTTP and SPDY

Ivan Pepelnjak (ip@ipSpace.net)

ipSpace.net AG

2 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

The Problem

What’s going on?

This is when the user

sees the web page

The web page

is loaded

3 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Why Is This a Problem?

Why are impatient and forgetful:

< 0.1sec Instantaneous response (Nielsen, 1993)

1 sec User’s flow of thoughts is interrupted

2 sec Interference with short-term memory

10 sec User is no longer focused on dialog

Some other numbers:

• Users abandon non-working web page in 3-4 seconds

• Half a second delay caused 20% drop in traffic (Google, 2006)

• Ultimate goal: 100 msec load time

Sources:

http://csi.ufs.ac.za/resres/files/Nah.pdf

http://www.strangeloopnetworks.com/web-performance-optimization-hub/topics/psychology-and-human-factors/

http://www.webperformancetoday.com/category/human-factors/

http://www.websiteoptimization.com/speed/tweak/psychology-web-performance/

4 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

The Problem – Details

• Most web pages have tens (or more) elements

• Every element is loaded with an HTTP request

• HTTP runs over TCP (HTTPS over TLS and TCP)

To understand web page loading behavior we have to understand TCP

5 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Disclaimer

There’s very little you can fix in TCP. Most optimization must be done in markup,
back-end scripts and server configuration:

• Optimal markup with progressive enhancements;

• Image sprites and use of new CSS features instead of images

• Responsive images (load lo-res, replace with hi-res)

• DATA URI for small images

• Minimize cookies

• Prefetching

• Avoid redirects and DNS lookups

• Compression

• Browser-side local storage

• Caching, caching, caching

Sample article: http://queue.acm.org/detail.cfm?id=2434256

6 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

TCP And HTTP 101

7 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

TCP Mission Statement

TCP = Reliable stream delivery service

Handles:

• Packet loss

• Packet duplication and reordering

Does not care about:

• Timely delivery

• Multiple sessions

• Structured data or record boundaries

8 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

TCP Session Establishment: 3-Way Handshake

• TCP session established with a 3-way handshake

• RTT delay before first user data is sent

9 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Is It Really That Far to Stanford?

30 ms within Europe

80 ms across Atlantic

70 ms across US

10 ms on West Coast

10 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

The Difference Between Theory and Practice

11 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

The Impact of Transmission Technology

$ ping www.nil.com

Pinging www.nil.com [192.168.253.10] with 32 bytes of data:

Reply from 192.168.253.10: bytes=32 time=8ms TTL=253

Reply from 192.168.253.10: bytes=32 time=8ms TTL=253

Reply from 192.168.253.10: bytes=32 time=8ms TTL=253

Reply from 192.168.253.10: bytes=32 time=9ms TTL=253

$ ping www.nil.com

Pinging www.nil.com [193.110.145.49] with 32 bytes of data:

Reply from 193.110.145.49: bytes=32 time=369ms TTL=244

Reply from 193.110.145.49: bytes=32 time=282ms TTL=244

Reply from 193.110.145.49: bytes=32 time=409ms TTL=244

Reply from 193.110.145.49: bytes=32 time=267ms TTL=244

Reply from 193.110.145.49: bytes=32 time=242ms TTL=244

Reply from 193.110.145.49: bytes=32 time=223ms TTL=244

Reply from 193.110.145.49: bytes=32 time=178ms TTL=244

Reply from 193.110.145.49: bytes=32 time=167ms TTL=244

Reply from 193.110.145.49: bytes=32 time=193ms TTL=244

Reply from 193.110.145.49: bytes=32 time=136ms TTL=244

Reply from 193.110.145.49: bytes=32 time=249ms TTL=244

Reply from 193.110.145.49: bytes=32 time=228ms TTL=244

Reply from 193.110.145.49: bytes=32 time=193ms TTL=244

Reply from 193.110.145.49: bytes=32 time=167ms TTL=244

Reply from 193.110.145.49: bytes=32 time=252ms TTL=244

Fiber Internet access

+ VPN tunnel

3G mobile access

over Bluetooth

Remember: Latency is never zero. It could be higher than expected

12 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

HTTP Request / Response

• HTTP is a request-response protocol

• Another RTT delay before first HTML data is received

13 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

HTTP Request / Response

• HTTP is a request-response protocol

• Another RTT delay before first HTML data is received

14 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

TCP Initial Congestion Window

• TCP was developed in 1980s

• Major problems: congestion, buffer memory
utilization

Mechanisms

• Window = maximum amount of
unacknowledged data

• Congestion window = window size reduced
to avoid congestion

• Default: initial congestion window = 3 packets
(3 x 1460 bytes)

15 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

TCP Slow Start

Source: http://packetlife.net/blog/2011/jul/5/tcp-slow-start/

RTT = 50ms

Optimal throughput

after ~ 8 RTT

16 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

TCP: Impact of Packet Drops

Source: http://wiki.nil.com/Policing_vs_shaping

17 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Let’s Recap

Web load time is influenced by TCP and HTTP

• One RTT to establish the TCP session

• Second RTT to send HTTP request and get response data

• Third RTT to get more than 3 packets of response data

• Slow down on packet loss

What can be done?

• Parallel TCP sessions

• Reuse TCP sessions (persistent HTTP connections, SPDY)

• Pre-establish TCP sessions

• Increase initial congestion window on servers (Google: 10)

• Send HTTP GET request with TCP SYN (TCP Fast Open)

• Use CDN to reduce RTT

18 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

TCP and HTTP Improvements

19 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Parallel TCP Sessions: ucsd.edu On Firefox 9.0.1

• 6 sessions per hostname

• Additional sessions are established after the initial response is parsed

• JavaScript is loaded before images

More details: http://www.browserscope.org/?category=network&v=top

20 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Parallel TCP Sessions: ucsd.edu On Chrome 24.0

• 6 sessions per hostname

• Additional sessions are pre-established on second access

• JavaScript is loaded before images

21 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Persistent HTTP Sessions

• Persistent sessions introduced in HTTP 1.1

• TCP session is not closed after HTTP response is sent

• Enabled by default on all major web servers and browsers

Benefits

• One RTT is saved on subsequent HTTP requests

Drawbacks

• Each persistent HTTP session consumes a thread or worker process

22 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

HTTP Pipelining

Persistent HTTP session
HTTP pipelining

23 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

HTTP Pipelining

• Multiple HTTP requests are sent without
waiting for HTTP response

• Not widely used, has to be enabled manually

Benefit

• One RTT is saved for all subsequent requests

Drawback

• Head-of-line blocking of response data

• Hard to select optimal sequence of requests

Source: http://www.guypo.com/technical/http-pipelining-not-so-fast-nor-slow/

24 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Increase Initial Congestion Window

Google’s proposal:

• Set initial congestion window (cwnd) to 10

• Up to ~15K of HTTP response (reasonably-
big web pages) delivered in a single RTT

• Does not impact existing L4+ middleboxes

• Minimal impact on the Internet

• Already used by Google and some large CDN

• Easy to configure on a Linux server

Sources:

https://developers.google.com/speed/articles/tcp_initcwnd_paper.pdf

http://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/

http://www.cdnplanet.com/blog/tune-tcp-initcwnd-for-optimum-performance/

ip route change default via 192.168.200.193

dev eth0 initcwnd 10

Percentage of retransmissions

25 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Retransmissions Matter a Lot

Source: http://wiki.nil.com/Policing_vs_shaping

Policing

(packet drops)

Shaping

(packet delays)

26 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

TCP Fast Open (Experimental)

• HTTP request is sent in SYN packet

• Server processes HTTP request before
3-way handshake completes

• Response data is sent before initial client ACK

Benefit: One RTT is saved

Drawbacks

• Duplicate SYN packets
 works only for idempotent transactions
 wasted server resources

• SYN floods are more harmful
 protection with fast open cookie

• L4+ firewalls might intercept and drop packets with SYN+data or TFO options

Sources:

http://research.google.com/pubs/pub37517.html

http://tools.ietf.org/html/draft-ietf-tcpm-fastopen-01

27 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

SPDY

28 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

SPDY Overview

What is it?

• Framing layer implementing streams
above TCP or TLS

• Optimized for HTTP

How does it work?

• Single client-server TCP connection
(based on IP addresses, not host names)

• HTTP requests and responses streamed in
parallel over the TCP session

Optimizations

• Compressed HTTP headers in SYN_STREAM and SYN_REPLY
requests

• Chunked responses prevent head-of-line blocking

More @ http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00

SPDY framing layer

HTTPHTTP HTTP

TLS (opt)

TCP

IP(4/6)

SPDY stream SPDY stream SPDY stream

29 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Creating SPDY streams

SYN_STREAM creates a new stream

• Streams can be bidirectional (regular HTTP
requests) or unidirectional (server push)

• Stream-ID is odd for client-created streams,
even for server-created streams

• Priority can be used for priority queuing
within SPDY TCP session

• FIN flag has the same meaning as in TCP

HTTP layering

• HTTP headers transported in name/value pairs

• Name/values block is compressed with zlib,
initial dictionary specified in SPDY draft

30 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Stream Acceptance

SYN_REPLY indicates stream acceptance

• FIN flag sent when this is the last message in
this stream

• HTTP headers sent compressed in
name/value block

• Additional data sent in DATA frames

31 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

SPDY Session Setup

TCP SYN

TCP SYN + ACK

TCP ACK

TLS Client Hello

TLS Server Hello

SPDY SETTINGS (opt)

SPDY SYN_STREAM

SPDY SYN_REPLY

R
T

T
#
1

R
T

T
#
2

R
T

T
#
3

• SPDY is commonly used over TLS

• Three RTTs (without DNS lookup) before first data arrives

32 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Sample SPDY Transactions

SYN_STREAM + FIN

HTTP GET headers

SYN_REPLY

HTTP response headers

DATA + FIN

Response data

SYN_STREAM

HTTP POST headers

DATA + FIN

POST data

SYN_REPLY (+FIN)

HTTP response headers

DATA + FIN (optional)

Response data

H
T

T
P

 G
E

T
H

T
T

P
 P

O
S

T

33 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Streamlined SPDY Response Delivery

SYN_STREAM (HTML)

SYN_REPLY (HTML)

DATA (HTML)

SYN_STREAM PRIO = 0 (CSS)

SYN_STREAM PRIO = 0 (JS)

SYN_STREAM PRIO = 7 (PNG)

SYN_REPLY (CSS)

SYN_REPLY (JS)

SYN_REPLY (PNG)

SYN_DATA (CSS)

SYN_DATA (JS)

SYN_DATA (JS)

R
T

T
#
1

R
T

T
#
2

• All data delivered in two RTTs + xfer time

• Long-lived TCP session used by SPDY
would have large cwnd size

• Works well when RTT >> transfer time

34 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Is SPDY Faster Than HTTP

Google: YES

• Sites load twice as fast

• Using fine-tuned examples with lots of images
http://blog.chromium.org/2009/11/2x-faster-web.html
http://googledevelopers.blogspot.com/2012/04/add-spdy-support-to-your-apache-server.html

Microsoft and others: NO (OK, maybe a little)

• SPDY+TLS is comparable to HTTPS + pipeline

• SPDY + minify is approximately as fast as HTTP + pipeline + minify

• SPDY+TLS is slower than HTTP due to extra RTT
http://research.microsoft.com/apps/pubs/default.aspx?id=170059

• SPDY is approximately as fast as HTTPS on real-life data
http://www.guypo.com/technical/not-as-spdy-as-you-thought/

35 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Real-Life SPDY

SPDY prerequisites:

• Web server with SSL/TLS (SPDY w/o TLS is rare)

• Next-Protocol Negotiation extensions for TLS
(custom mod_ssl required for Apache)

Real-life deployment and availability:

• Starting point for HTTP 2.0

• Available in Chrome and Firefox

• mod-spdy for Apache (from Google Code), patches for nginx,
development code for haproxy

• SPDY supported by F5 WebAccelerator

• Used by several large production web sites (Google, Wordpress, Cloudflare)

• Use SPDYCheck.Org to check SPDY status

36 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Conclusions

37 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Conclusions

• Web pages should load in < 100 msec, worst case in few seconds

Obstacles on the road to the holy grail

• Non-zero latency and non-infinite bandwidth

• Short-lived TCP sessions

• Request-response nature of HTTP

What could help:

• Parallel TCP sessions or SPDY

• HTTP pipelining

What will help:

• Good web site design

• Minification, compression and caching

38 © ipSpace.net / NIL Data Communications 2012 Building Scalable Web Applications (TCP and HTTP)

Questions?

