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The Problem

What’s going on?

This is when the user

sees the web page

The web page 

is loaded
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Why Is This a Problem?

Why are impatient and forgetful:

< 0.1sec Instantaneous response (Nielsen, 1993)

1 sec User’s flow of thoughts is interrupted

2 sec Interference with short-term memory

10 sec User is no longer focused on dialog

Some other numbers:

• Users abandon non-working web page in 3-4 seconds

• Half a second delay caused 20% drop in traffic (Google, 2006)

• Ultimate goal: 100 msec load time

Sources:

http://csi.ufs.ac.za/resres/files/Nah.pdf 

http://www.strangeloopnetworks.com/web-performance-optimization-hub/topics/psychology-and-human-factors/

http://www.webperformancetoday.com/category/human-factors/

http://www.websiteoptimization.com/speed/tweak/psychology-web-performance/
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The Problem – Details

• Most web pages have tens (or more) elements

• Every element is loaded with an HTTP request

• HTTP runs over TCP (HTTPS over TLS and TCP)

To understand web page loading behavior we have to understand TCP
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Disclaimer

There’s very little you can fix in TCP. Most optimization must be done in markup, 
back-end scripts and server configuration:

• Optimal markup with progressive enhancements;

• Image sprites and use of new CSS features instead of images

• Responsive images (load lo-res, replace with hi-res)

• DATA URI for small images

• Minimize cookies

• Prefetching

• Avoid redirects and DNS lookups

• Compression

• Browser-side local storage

• Caching, caching, caching

Sample article: http://queue.acm.org/detail.cfm?id=2434256
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TCP And HTTP 101
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TCP Mission Statement

TCP = Reliable stream delivery service

Handles:

• Packet loss

• Packet duplication and reordering

Does not care about:

• Timely delivery

• Multiple sessions

• Structured data or record boundaries
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TCP Session Establishment: 3-Way Handshake

• TCP session established with a 3-way handshake 

• RTT delay before first user data is sent
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Is It Really That Far to Stanford?

30 ms within Europe

80 ms across Atlantic

70 ms across US

10 ms on West Coast
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The Difference Between Theory and Practice
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The Impact of Transmission Technology

$ ping www.nil.com

Pinging www.nil.com [192.168.253.10] with 32 bytes of data:

Reply from 192.168.253.10: bytes=32 time=8ms TTL=253

Reply from 192.168.253.10: bytes=32 time=8ms TTL=253

Reply from 192.168.253.10: bytes=32 time=8ms TTL=253

Reply from 192.168.253.10: bytes=32 time=9ms TTL=253

$ ping www.nil.com

Pinging www.nil.com [193.110.145.49] with 32 bytes of data:

Reply from 193.110.145.49: bytes=32 time=369ms TTL=244

Reply from 193.110.145.49: bytes=32 time=282ms TTL=244

Reply from 193.110.145.49: bytes=32 time=409ms TTL=244

Reply from 193.110.145.49: bytes=32 time=267ms TTL=244

Reply from 193.110.145.49: bytes=32 time=242ms TTL=244

Reply from 193.110.145.49: bytes=32 time=223ms TTL=244

Reply from 193.110.145.49: bytes=32 time=178ms TTL=244

Reply from 193.110.145.49: bytes=32 time=167ms TTL=244

Reply from 193.110.145.49: bytes=32 time=193ms TTL=244

Reply from 193.110.145.49: bytes=32 time=136ms TTL=244

Reply from 193.110.145.49: bytes=32 time=249ms TTL=244

Reply from 193.110.145.49: bytes=32 time=228ms TTL=244

Reply from 193.110.145.49: bytes=32 time=193ms TTL=244

Reply from 193.110.145.49: bytes=32 time=167ms TTL=244

Reply from 193.110.145.49: bytes=32 time=252ms TTL=244

Fiber Internet access 

+ VPN tunnel

3G mobile access 

over Bluetooth

Remember: Latency is never zero. It could be higher than expected
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HTTP Request / Response

• HTTP is a request-response protocol

• Another RTT delay before first HTML data is received
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HTTP Request / Response

• HTTP is a request-response protocol

• Another RTT delay before first HTML data is received
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TCP Initial Congestion Window

• TCP was developed in 1980s

• Major problems: congestion, buffer memory 
utilization

Mechanisms

• Window = maximum amount of 
unacknowledged data

• Congestion window = window size reduced 
to avoid congestion

• Default: initial congestion window = 3 packets 
(3 x 1460 bytes)
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TCP Slow Start

Source: http://packetlife.net/blog/2011/jul/5/tcp-slow-start/

RTT = 50ms

Optimal throughput

after ~ 8 RTT
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TCP: Impact of Packet Drops

Source: http://wiki.nil.com/Policing_vs_shaping
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Let’s Recap

Web load time is influenced by TCP and HTTP

• One RTT to establish the TCP session

• Second RTT to send HTTP request and get response data

• Third RTT to get more than 3 packets of response data

• Slow down on packet loss

What can be done?

• Parallel TCP sessions

• Reuse TCP sessions (persistent HTTP connections, SPDY)

• Pre-establish TCP sessions

• Increase initial congestion window on servers (Google: 10)

• Send HTTP GET request with TCP SYN (TCP Fast Open)

• Use CDN to reduce RTT
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TCP and HTTP Improvements
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Parallel TCP Sessions: ucsd.edu On Firefox 9.0.1 

• 6 sessions per hostname

• Additional sessions are established after the initial response is parsed

• JavaScript is loaded before images

More details: http://www.browserscope.org/?category=network&v=top
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Parallel TCP Sessions: ucsd.edu On Chrome 24.0

• 6 sessions per hostname

• Additional sessions are pre-established on second access

• JavaScript is loaded before images
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Persistent HTTP Sessions

• Persistent sessions introduced in HTTP 1.1

• TCP session is not closed after HTTP response is sent

• Enabled by default on all major web servers and browsers

Benefits

• One RTT is saved on subsequent HTTP requests

Drawbacks

• Each persistent HTTP session consumes a thread or worker process
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HTTP Pipelining

Persistent HTTP session
HTTP pipelining
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HTTP Pipelining

• Multiple HTTP requests are sent without
waiting for HTTP response

• Not widely used, has to be enabled manually

Benefit

• One RTT is saved for all subsequent requests

Drawback

• Head-of-line blocking of response data

• Hard to select optimal sequence of requests

Source: http://www.guypo.com/technical/http-pipelining-not-so-fast-nor-slow/
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Increase Initial Congestion Window

Google’s proposal: 

• Set initial congestion window (cwnd) to 10

• Up to ~15K of HTTP response (reasonably-
big web pages) delivered in a single RTT

• Does not impact existing L4+ middleboxes

• Minimal impact on the Internet

• Already used by Google and some large CDN

• Easy to configure on a Linux server

Sources: 

https://developers.google.com/speed/articles/tcp_initcwnd_paper.pdf

http://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/

http://www.cdnplanet.com/blog/tune-tcp-initcwnd-for-optimum-performance/

# ip route change default via 192.168.200.193 

dev eth0 initcwnd 10

Percentage of retransmissions
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Retransmissions Matter a Lot

Source: http://wiki.nil.com/Policing_vs_shaping

Policing 

(packet drops)

Shaping

(packet delays)
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TCP Fast Open (Experimental)

• HTTP request is sent in SYN packet

• Server processes HTTP request before
3-way handshake completes

• Response data is sent before initial client ACK

Benefit: One RTT is saved

Drawbacks

• Duplicate SYN packets 
 works only for idempotent transactions
 wasted server resources

• SYN floods are more harmful
 protection with fast open cookie

• L4+ firewalls might intercept and drop packets with SYN+data or TFO options

Sources:

http://research.google.com/pubs/pub37517.html

http://tools.ietf.org/html/draft-ietf-tcpm-fastopen-01
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SPDY
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SPDY Overview

What is it?

• Framing layer implementing streams
above TCP or TLS

• Optimized for HTTP

How does it work?

• Single client-server TCP connection
(based on IP addresses, not host names)

• HTTP requests and responses streamed in
parallel over the TCP session

Optimizations

• Compressed HTTP headers in SYN_STREAM and SYN_REPLY 
requests

• Chunked responses prevent head-of-line blocking

More @ http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00

SPDY framing layer

HTTPHTTP HTTP

TLS (opt)

TCP

IP(4/6)

SPDY stream SPDY stream SPDY stream
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Creating SPDY streams

SYN_STREAM creates a new stream

• Streams can be bidirectional (regular HTTP
requests) or unidirectional (server push)

• Stream-ID is odd for client-created streams,
even for server-created streams

• Priority can be used for priority queuing
within SPDY TCP session

• FIN flag has the same meaning as in TCP

HTTP layering

• HTTP headers transported in name/value pairs

• Name/values block is compressed with zlib, 
initial dictionary specified in SPDY draft
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Stream Acceptance

SYN_REPLY indicates stream acceptance

• FIN flag sent when this is the last message in
this stream

• HTTP headers sent compressed in 
name/value block

• Additional data sent in DATA frames
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SPDY Session Setup

TCP SYN

TCP SYN + ACK

TCP ACK

TLS Client Hello

TLS Server Hello

SPDY SETTINGS (opt)

SPDY SYN_STREAM

SPDY SYN_REPLY

R
T

T
#
1

R
T

T
#
2

R
T

T
#
3

• SPDY is commonly used over TLS

• Three RTTs (without DNS lookup) before first data arrives
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Sample SPDY Transactions

SYN_STREAM + FIN

HTTP GET headers

SYN_REPLY

HTTP response headers

DATA + FIN

Response data

SYN_STREAM 

HTTP POST headers

DATA + FIN 

POST data

SYN_REPLY (+FIN)

HTTP response headers

DATA + FIN (optional)

Response data

H
T

T
P

 G
E

T
H

T
T

P
 P

O
S

T
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Streamlined SPDY Response Delivery

SYN_STREAM (HTML)

SYN_REPLY (HTML)

DATA (HTML)

SYN_STREAM PRIO = 0 (CSS)

SYN_STREAM PRIO = 0 (JS)

SYN_STREAM PRIO = 7 (PNG)

SYN_REPLY (CSS)

SYN_REPLY (JS)

SYN_REPLY (PNG)

SYN_DATA (CSS)

SYN_DATA (JS)

SYN_DATA (JS)

R
T

T
#
1

R
T

T
#
2

• All data delivered in two RTTs + xfer time

• Long-lived TCP session used by SPDY 
would have large cwnd size

• Works well when RTT >> transfer time
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Is SPDY Faster Than HTTP

Google: YES

• Sites load twice as fast

• Using fine-tuned examples with lots of images
http://blog.chromium.org/2009/11/2x-faster-web.html
http://googledevelopers.blogspot.com/2012/04/add-spdy-support-to-your-apache-server.html

Microsoft and others: NO (OK, maybe a little)

• SPDY+TLS is comparable to HTTPS + pipeline

• SPDY + minify is approximately as fast as HTTP + pipeline + minify

• SPDY+TLS is slower than HTTP due to extra RTT
http://research.microsoft.com/apps/pubs/default.aspx?id=170059

• SPDY is approximately as fast as HTTPS on real-life data
http://www.guypo.com/technical/not-as-spdy-as-you-thought/ 
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Real-Life SPDY

SPDY prerequisites:

• Web server with SSL/TLS (SPDY w/o TLS is rare)

• Next-Protocol Negotiation extensions for TLS 
(custom mod_ssl required for Apache)

Real-life deployment and availability:

• Starting point for HTTP 2.0

• Available in Chrome and Firefox

• mod-spdy for Apache (from Google Code), patches for nginx, 
development code for haproxy

• SPDY supported by F5 WebAccelerator

• Used by several large production web sites (Google, Wordpress, Cloudflare)

• Use SPDYCheck.Org to check SPDY status
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Conclusions
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Conclusions

• Web pages should load in < 100 msec, worst case in few seconds

Obstacles on the road to the holy grail

• Non-zero latency and non-infinite bandwidth

• Short-lived TCP sessions

• Request-response nature of HTTP

What could help: 

• Parallel TCP sessions or SPDY

• HTTP pipelining

What will help:

• Good web site design

• Minification, compression and caching
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Questions?


