

SDN and IPv6 – Better Together?

Ivan Pepelnjak (ip@ipSpace.net)
Network Architect

ipSpace.net AG

Who is Ivan Pepelnjak (@ioshints)

Past

- Kernel programmer, network OS and web developer
- Sysadmin, database admin, network engineer, CCIE
- Trainer, course developer, curriculum architect
- Team lead, CTO, business owner

Present

Network architect, consultant, blogger, webinar and book author

Focus

- SDN and network automation
- Large-scale data centers, clouds and network virtualization
- Scalable application design
- Core IP routing/MPLS, IPv6, VPN

Before We Start: In Case You Haven't Noticed

Networking hasn't changed much in the last 40 years

- We lost a few bits and pieces below IP
- We got 128 bit addresses instead of 32 bit addresses
- Everything runs on Ethernet these days

... and every 5 years someone reinvents large-scale bridging

... and causes a few large-scale meltdowns

... and then the pendulum swings back

Insanity: doing the same thing over and over again and expecting different results.

Albert Einstein

Can We Make SDN Better With IPv6 (or Vice Versa)

What Exactly Is SDN?

The Madness Started in March 2011

SDN is the physical separation of the network control plane from the forwarding plane, and where a control plane controls several devices

Challenges of Centralized Control Plane

Conceptual challenges

- Out-of-band control plane network
- No distributed intelligence → no resilience to failures
- Controller is the central point of failure
- Total loss of control-plane protocols after a controller failure
- Lack of shared fate (requires end-to-end OAM)

Real-life challenges

- Poor OpenFlow implementations (very limited multitable support)
- Limited TCAM sizes (few thousands)
- Low TCAM update speed (less than thousand entries per second)
- Slow switch-to-controller channel due to underpowered switch CPUs

More in *OpenFlow Deep Dive* webinar

Every old idea will be proposed again with a different name and a different presentation, regardless of whether it works.

RFC 1925, Rule 11

How Does This Apply to IPv6?

- Doesn't matter whether you process AppleTalk, DECnet, IPX, IPv4 or IPv6
- IPv6 was always considered a second-class citizen (remember: the craze started in 2011)
- OpenFlow didn't support IPv6 at all (for a long time)

Takeaway: once we change the forwarding paradigm, we can be creative about what bits mean

More in *OpenFlow Deep Dive* webinar

Getting Creative with Bits

What Have We Got in IPv6?

- Large addresses
- Extension headers
- Flow labels

More in *Enterprise IPv6 101* webinar

Radical IPv6-Based Redesign: Deutsche Telekom Terastream

- IPv6-only transport network
- IPv4-as-a-Service
- Perfectly symmetrical structure
- No MPLS, no TE

Customer services encoded in IPv6 address bits

Segment Routing: Source Routing Reinvented

Traffic engineering (like MPLS TE) is a hard problem

- Bandwidth estimates are imprecise
- Traffic paths are unpredictable and may change after failure/recovery
- Reservations must be kept in the core routers
- Continuous state refresh (RSVP-TE)

What if we would...

- Use a controller to compute paths (Frame Relay says hi)
- Use some mechanism to indicate loose path through the network in the packet (let's call it Segment Routing)
- Install paths in head-end routers

Congratulations, you reinvented Token Ring SRB

© ipSpace.net 2018 SDN and IPv6

Software-Defined Packet Forwarding

SDN is packet forwarding done in software (on x86 platform)

When I Was Still Young...

... we did all packet forwarding in software ... and most low-end network devices still do.

Here be software cisco Systems AGS X1539.98

Cisco AGS at Computer History Museum Source: Evilrouters.Net

Huge Success (When Applied Correctly)

- 20 Gbps per core, 100+ Gbps per x86 server
- Innovative appliances (example: L2VPN over IPv6, 4-over-6 tunneling...)
- Major networking vendors offering virtualized devices with DPDK/6WIND or equivalent

More in *Network Function Virtualization* webinar

Service Provider Use Case: Lightweight 4over6 in Terastream

- Reduce network complexity → IPv6-only access network
- Flexible IPv4 support → VM-based pseudowire termination

More in SDN Use Cases webinar and Software Gone Wild Episodes 52 (4over6) & 17 (L2VPN over IPv6)

SDN = Whitebox Switching

All Data Center Switching Vendors Use Merchant Silicon

- High-speed packet forwarding is becoming commodity
- Limited differentiation in hardware → developing custom ASICs makes little sense
- Major vendors focus on software, integration or logistics

More in *Market Overview* part of *Data Center Fabrics* webinar

Software / Hardware Disaggregation

- Hardware costs are 30-40% of the product costs (gross margin of networking vendors is above 60%)
- Software and support are the really expensive parts (and yet we're all buying boxes)
- Why can't we buy hardware and software as separate items?

Benefits:

- Increased flexibility (reuse the same hardware)
- Simplified sparing

© ipSpace.net 2018 SDN and IPv6

Real Benefits

Install your own software on networking devices

- Control-plane daemons
- Customized telemetry
- Push agents
- Pilot data-plane implementations (SR-IPv6)

Linux everywhere

- Unified management of servers and network devices
- Common tooling
- Common control-plane functionality (including shared bugs)

More in Open Networking and Cumulus Linux webinars, explore also Software Gone Wild podcast

SDN = Network Automation

SDN is an approach to computer networking that allows network administrators to manage network services through abstraction of lower level functionality

Everything Well-Defined Can Be Automated

How About IPv6 Deployments?

Educate Research Design **Test Deploy**

IPv6 Deployment Is Utterly Boring

IPv6 configuration is very similar to IPv4 configuration

- Slightly different commands and caveats
- Different addresses
- Deploying IPv6 is boring...
- ... and boredom results in mistakes

```
interface Loopback0
ip address 10.0.1.1 ...
ip ospf 1 area 0
ipv6 address FD00:DB8:1/128
ipv6 ospf 1 area 0
```

© ipSpace.net 2018 SDN and IPv6

Failures Are Expensive: Real-Life Example

- Enable IPv6 in database segment → OK
- Enable IPv6 in other segments → OK
- Test connectivity → OK

Weeks later...

Add DNS server AAAA record → CRASH

In the Ideal World

© ipSpace.net 2018 SDN and IPv6

Back on Planet Earth

```
upgrade fpd auto
version 15.0
service timestamps debug datetime msec
hostname PE-A
boot-start-marker
boot-end-marker
logging buffered 4096
interface GigabitEthernet0/1
  description to PE1
  ip address 10.0.0.5 255.255.255.252
```

The only source of truth

Prepare for Migration: Functionality Classification

Identify parts of configuration that have to be migrated to IPv6

Potential classification outcomes:

- Functionality is not IP-dependent
- The functionality will remain on IPv4
- We need dual-stack functionality
- Functionality will move to IPv6

Prepare for Migration: v4 → v6 Mappings

Add IPv6 equivalent of IPv4 configuration for every bit of dual-stack functionality

- Sounds simple
- Need well-defined v4 → v6 mapping
- Where will you get it?

We need single source of (addressing) truth

```
interface Loopback0
  ip address 10.0.1.1 ...
  ip ospf 1 area 0
  ipv6 address FEC0::CCCC:1/128
  ipv6 ospf 1 area 0
```


More in Automating IPv6 Deployments part of Network Automation Use Cases webinar

v4 → v6 Mappings: Recovering from Worst Case

Assumptions:

- No IPAM (or reliable Excel)
- Device configurations are the only source of truth

Build v4-to-v6 mappings

- Analyze router configurations
- Scrape subnet information from interfaces
- Use simple algorithmic v4 → v6 mapping to build IPv6 subnets and host addresses

Unfortunately we can't use DNS lookups

Use IPv6 Deployment as an Excuse to Build Source-of-Truth

Even More Playing-with-Bits

Container and VM Networking

Most Docker networking implementations use vEth pairs

- Virtual cable connecting container to virtual switch
- Docker's implementation uses Linux bridge (not OVS)

Docker IPv6 Networking

- A /64 prefix is assigned to Linux bridge internal network
- ToR switch gets a /64 route toward each host (BGP, DHCPv6 PD...)
- It's possible to use LLA on physical network (and run BGP over it)

Remember CLNP?

- Addresses were assigned to hosts (not interfaces)
- Interfaces were unnumbered
- Hosts were advertising their addresses with ES-IS

Identifier-Locator Addressing for IPv6

- Decent application architectures should use fixed addresses and service discovery
- But what if we'd fix the IPv6 address in a scalable manner?

Welcome to ILA

- Low-end 64 bits = endpoint identifier
- High-order 64 bits = location identifier

NAT anyone?

- Endpoints use Standard Identifiers (with fixed location part)
- Every host (hypervisor, container) contains mapping rules from standard identifier to endpoint current location
- NAT, right? Of course... at least it's stateless NPT

Back to the Big Picture

SDN Principles Revisited

What we would love to have

- Automated and consistent network services deployment
- Consistent policies
- End-to-end visibility
- Decisions made on centralized view of end-to-end visibility
- Automatic programming or configuration of network devices
- Automated response to events or changes in traffic or topology

© ipSpace.net 2018 SDN and IPv6

Build or Buy?

Others Made It Work...

... When Will You?

More Information

Learn At Your Own Pace

SDN Webinars

© ipSpace.net 2018 SDN and IPv6

Network Automation Webinars

© ipSpace.net 2018 SDN and IPv6

Questions?

Web: ipSpace.net

Blog: blog.ipSpace.net

Email: ip@ipSpace.net

Twitter: @ioshints

Automation: ipSpace.net/NetAutSol

Data center: ipSpace.net/NextGenDC

Webinars: ipSpace.net/Webinars

Consulting: ipSpace.net/Consulting

