

© Copyright ipSpace.net 2017 Page 1

PRACTICE YOUR GIT
This set of simple exercises should get you more familiar with the basics of
Git, the (currently) most popular source code version control tool. We use Git
extensively throughout the Building Network Automation Solutions online
course to manage the code, distribute the examples, and submit your
solutions, so it might be handy to become more fluent in its basic usage.

GETTING STARTED
In this section, you’ll create an account on a public Git-based service, create
your first repository, and commit your first change

§ If you don’t have an account on GitHub, GitLab, BitBucket or similar
service create one.

 Most of the web sites mentioned above offer very similar services and
similar add-ons to the basic Git functionality. It might be worth
choosing one that allows you to create free private repositories,
and/or on-premises deployment.

§ Create your first repository using web-based interface on the web site of
your choice.

§ Clone the repository to a local directory (you’ll usually find the necessary
instructions on the web site you decided to use).

§ Copy a few device configurations to the local repository and commit them.
§ Push the changes to the remote repository and verify you can see them

with the web interface.

MAKING CHANGES
Let’s do some basic changes:

§ Change one of the files in your repository and add a new file.
§ Commit the changes with git commit -a
§ Check the changes included in the commit with git show. You might

notice that the new file is not included in the commit because it’s not yet
tracked by Git.

§ Start tracking the new file with git add filename.
§ You might commit the newly-tracked file with git commit, but then you’d

end with two commits instead of one. Use git commit --amend to add
the changes to the previous commit.

§ Push the changes to remote repository.

© Copyright ipSpace.net 2017 Page 2

 Don’t use git commit --amend after pushing the changes to remote
repository. Doing that would result in divergent commit history,
requiring you to merge changes from remote repository to local
changes before the next push. Of course, you can try it out to see
what happens.

WORKING WITH BRANCHES
You’ll make a series of changes to device configurations and merge them into
the official configuration repository (master branch).

§ Create work branch in your local repository and switch to it.
§ Make several changes to device configurations and commit them.

Document the changes you made in commit messages.
§ Push the committed changes in the work branch to remote repository.

Verify you can see them with the web interface.
§ Make several commits in the work branch.
§ Switch to the master branch and merge changes made in the work

branch.
§ Commit the changes to master branch (if needed) and push them to

remote repository.

ABANDONING A CHANGE
You’ll make a series of changes to device configurations:

§ Create work branch in your local repository and switch to it.
§ Make several changes to device configurations and commit them.
§ Push the committed changes in work branch to remote repository.

After discovering you don’t need the change you worked on (or figuring out
it’s not going in the right direction) you’ll abandon the change:

§ Switch to master branch. Make sure the branch is clean and contains no
uncommitted changes.

§ Delete the local and remote copy of the work branch.

© Copyright ipSpace.net 2017 Page 3

MORE COMPLEX BRANCHING
After mastering the basics work on a more complex branching scenario:

§ Create work branch.
§ Make a few changes to the work branch (including commits and pushes to

remote repository).
§ Create test branch off work branch.
§ Make a few changes to test branch. Abandon test branch.
§ Create another branch off work branch.
§ Make a few changes to another branch. Merge the changes into work

branch. Delete another branch.
§ Merge changes made in work branch into master branch.

IMPLEMENTING A HOT FIX
After you started working on a new idea your boss came in telling you to fix
an urgent issue in production network.

Start working on a new idea:

§ Create work branch from master branch.
§ Make a few changes to work branch and commit them. Push changes to

remote repository.

The boss rushes in. Time to implement the urgent fix:

§ Switch to master branch.
§ Create hotfix branch from master branch.
§ Make the necessary changes to hotfix branch, commit them, and merge

them into master branch.
§ Push the changes to remote repository.

Continue working on your idea:

§ Switch to work branch. Make a few more changes.
§ Commit the changes and push them to remote repository.

Implement your idea in production:

§ Switch to master branch.
§ Merge changes from work branch into the master branch. Push changes to

remote repository.

Experiment with git merge conflict handling. Make changes to the same files
in work and hotfix branches. Make changes to the same part of the file in both
branches. See how much abuse git can take before creating a merge conflict.
Learn how to resolve the merge conflict.

© Copyright ipSpace.net 2017 Page 4

WORKING WITH MERGE REQUESTS
Merge requests are add-on functionality offered by most public Git
repositories. Instead of merging two branches locally you perform the merge
using the web interface. Most public repositories also allow you to add
reviewers to the merge process and protect the master branch.

§ Before starting make sure your local repository is in sync with the remote
repository by pulling the changes from remote repository.

§ Create a new local branch, make a few changes to it, and push the
changes to the remote repository.

§ Using web interface create a merge request: a request to merge changes
from your branch into the master branch.

§ Review and approve the merge request.
§ Approving merge request on remote repository makes changes to remote

master branch but does not affect your local repository. Pull the changes
from remote master branch into your local repository.

WORKING IN A TEAM
You’ll emulate a team of engineers by creating several local repositories
cloning the same remote repository:

§ Create several directories (we’ll call them A, B and C) and clone your
remote repository into them.

§ Create a different work branch in each local repository. Make changes to
that branch, commit them, and push them to remote repository.

§ Create merge requests for all work branches and approve them.
§ Pull changes from remote repository into local repositories.

 While web-based merge requests make your life easier (particularly if
you’re not proficient with Git), you don’t have to use them to merge
changes made by team members. You’ll find several merging
strategies using nothing but git commands explained in the Pro Git
book.

SYNCING CHANGES
Continuing the previous example, imagine you’re engineer A making changes
to device configurations. Commit them, create merge request and approve it.
Remote repository now contains changed configuration, but engineer B’s and
C’s local repository does not.

© Copyright ipSpace.net 2017 Page 5

Now pretend you’re a clumsy engineer C. Create a work branch and start
changing the same files engineer A has changed without syncing your local
repository with the remote copy. See what happens when you create a merge
request.

Changing hats and becoming engineer B, pull the changes from remote
repository into your master branch before creating a work branch and
changing files in it. See what happens when you try to merge your changes
with a merge request.

CONTINUOUS SYNCING
Imagine you’re engineer A working on a change that takes weeks to design,
develop, test and polish. In the meantime, B and C make changes to the
master branch making your working branch more and more out-of-sync with
reality.

Set up the scenario:

§ Create work branch in local repository A. Make some changes in the work
branch, commit them and push them to remote repository.

§ Create a few hot fixes in repositories B and C. Commit them and merge
them into the remote master branch.

At this point, the remote master branch and A’s work branch have diverged.

Sync changes from remote master branch into A’s work branch:

§ (Optional) Check the differences between master branch in local
repository A and remote master branch to see whether there’s anything
that needs to be synced (search for git diff remote branch to figure out
how to do it).

§ Pull changes from remote master branch into A’s local repository.
§ Check the differences between new version of master branch and your

work branch.
§ Merge the changes from master branch into work branch.
§ Continue working on work branch and pushing commits to remote

repository.
§ Complete your project by submitting a merge request and merging it with

the master branch.

 In real life, you might be asked to do a git rebase in your work
branch before submitting the merge request. We’ll not go down that
particular rabbit trail.

