
Scale-Out Web Application Architectures

Ivan Pepelnjak (ip@ipSpace.net)

ipSpace.net AG



2 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Scale Up or Scale Out?

Transactional databases

Web servers

https://www.evernote.com/pub/ioshints/scaleMatters



3 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Roadmap

Single server solutions

Scale-out servers

Multiple data centers

Simple single-server application stack

Scripting offload server

Standalone database server



4 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Typical Small Web Application: LAMP Stack

• Web site running on a single server (or VM)

• Local or virtual disk (hopefully with backup)

• Typical web hosting setup

PHP

Apache

MySQL

Linux

Web application (PHP/Java/Ruby)

Scripting environment

Web server

Operating system

CPU/RAM Block Storage

Database

File system

Microsoft: PHP  ASP, Apache  IIS, MySQL SQL Server, Linux WinSrv



5 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Increased Load  Add Worker Processes

• HTTP requests served by worker processes (process fork)

• All worker processes are identical (and large)

• Scripts processed in worker processes or external programs (CGI)

• Client request blocks a worker process (or a thread)

• Persistent session occupies a worker process for a long time

Server host

Web server

Worker Worker Worker Worker

mod_php

mod_perl CGI

Simple LAMP Stack

High-volume web sites hate persistent sessions



6 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Optimize Worker Processes: FastCGI

• Web server worker processes serve simple (static) requests

• Script processing offloaded to a different server

• Script output buffered in the worker process

• Client requests and persistent sessions no longer block script workers 

Server host

Web server

Worker Worker Worker Worker

php

FastCGI server

php Perl Perl

Simple LAMP Stack



7 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Optimize Web Server: Apache  Nginx

• Worker-based web servers are connection-bound

• Throwing faster CPU @ worker-based web server won’t increase the 
maximum number of connections (kernel locking limits concurrency)

• Event-driven web servers are bandwidth- not connection-bound 
Consistent behavior under heavy load

Apache

Web server

Worker Worker Worker Worker

php

FastCGI server

php Perl Perl

Simple LAMP Stack

Note: IIS is very similar to Apache (no FastCGI support though)

Nginx / NodeJS

Event-driven web server

FastCGI server

php Perl Perl



8 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Apache Versus Nginx

• Apache has a problem with large number of concurrent connections

• Adding more CPU does not help much

• Nginx has consistent performance

Simple LAMP Stack

Source: http://erratasec.blogspot.com/2012/10/scalability-is-systemic-anomaly.html

2



9 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Result: Apache Is Losing Market Share

Simple LAMP Stack

Source: http://news.netcraft.com/archives/2013/01/07/january-2013-web-server-survey-2.html



10 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Beyond Single Server: Decouple Database Server

• Replace database on web server with a dedicated database server

• Prerequisite for any scale-out application architecture

• Better use of resources

• Multiple web servers can access the same data

PHP

Apache

MySQL

Linux

PHP

Apache

Linux

MySQL

Linux

+



11 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Roadmap

Scale-out servers

Single server solutions

Multiple data centers

Application-level load balancing

Network-based load balancing mechanisms

Session state management

Scale-out database servers



12 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Further Scale Out: Multiple Web or App Servers

A farm of web servers to spread the load

Challenges:

• All servers must appear as the same host name  load balancing

• Application code and configuration files must be synchronized across web 
servers  single virtual disk image or distributed file system

• Session state management

PHP

Apache

Linux

MySQL

Linux

+



13 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Load Balancing Architectures

Servers directly connected to the outside network

• Multiple independent servers

• Multiple outside IP addresses

• DNS-based load balancing

Load balancing appliance or server

• Single web server, multiple CGI or app servers

• Single caching server, multiple web servers

• TCP or HTTP load balancing



14 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

FastCGI server FastCGI server

Load Balancing with FastCGI Offload

• FastCGI works over TCP  you can separate web and app servers

• FastCGI server selection based on URL path  per-application servers

• FastCGI server selection based on suffix  language-specific servers

• Multiple FastCGI servers (nginx, lighthttpd)  application-level load 
balancing

Web server

Worker Worker Worker Worker

php Perl php Perl

Application Load Balancing



15 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

App Server

module module

Load Balancing with Application Servers

• Architecturally similar to FastCGI offload

• FastCGI script receives headers from original HTTP request

• App server receives HTTP request from web worker process 
a layer of isolation

Web server

Worker Worker Worker Worker

App Server

module module

Application Load Balancing

REST, SOAP, JSON, .NET, Corba ...

Network-based load balancer might be needed between web and app servers



16 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Web Server Web Server

Load Balancing with Reverse Proxy

• Reverse proxy (front-end cache) can use multiple physical servers for a single 
HTTP hostname

Challenges:

• Load balancing mechanism

• Session state persistence (sticky sessions)

• Original client IP address is lost

• SSL/TLS client certificate might be lost

Varnish Cache

Worker Worker Worker Worker

Application Load Balancing



17 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Roadmap

Scale-out web or app servers

Single server solutions

Application-level load balancing

Network-based load balancing mechanisms

Session state management

Scale-out database servers

Multiple data centers



18 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

DNS-based Local Load Balancing

• DNS server keeps track of application server availability

• Random list of addresses of all available servers is sent in 
DNS responses

• Low TTL times used to remove unavailable servers from the list

• Works reasonably well for non-critical applications that rely on DNS

• Web browsers don’t work well due to DNS pinning  use in combination with 
high-availability features (IP address sharing)

DNS Q: www.example.com

DNS A: 10.0.0.1, 

10.0.0.2, 10.0.0.3
10.0.0.1

10.0.0.2

10.0.0.3

DNS Q: www.example.com

DNS A: 10.0.0.3, 

10.0.0.2, 10.0.0.1

DNS Q: www.example.com

DNS A: 10.0.0.2, 10.0.0.1

4



19 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Local Anycast Load Balancing

• Multiple application servers have the same IP 
address (configured on loopback interface)

• Common IP prefix is advertised to first-hop router(s)
 routing protocol running on servers
 static routes on first-hop routers

• 5-tuple load balancing available in most routers spreads the load

• Every change in server availability changes the load balancing tables
 useful only for UDP traffic
 heavily used in high-volume DNS environments

DNS Q (to 10.1.2.3)

4

10.0.0.1

10.1.2.3

10.0.0.2

10.1.2.3

10.0.0.3

10.1.2.3

DNS Q (to 10.1.2.3)



20 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Load Balancers – Principles

• Every service has one or more virtual IP addresses (and/or ports)

• Service is associated with a pool of servers

• Load balancer constantly checks the servers’ health and responsiveness

• Clients connect to the virtual IP address, load balancer maps the request to the 
best server in the pool

10.0.1.2

10.0.1.1

10.0.0.1 =

10.0.1.1

10.0.1.2

L4-7 Load Balancing

10.0.0.1



21 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Load Balancers – Operations

Control plane

• Monitor the health of inside servers (from ping to application-level requests)

• Track the server load (number of sessions or responsiveness)

Data plane

• Select the “best” inside server for a new session (incl. stickiness)

• Use NAT and/or two TCP sessions

• Optional: adjust/rewrite the content

10.0.1.2

10.0.1.1

10.0.0.1 =

10.0.1.1

10.0.1.2

TCP SYN S=U D=10.0.0.1 TCP SYN S=U D=10.0.1.1

TCP SYN S=10.0.1.1 D=UTCP SYN S=10.0.0.1 D=U

L4-7 Load Balancing



22 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Load Balancers – Transparent Mode

Load balancer is transparent to the clients and servers

Destination-only NAT: 

• Virtual server IP address is replaced with real IP address of selected server

• Client IP address is not changed
 logging, address-based access control or geolocation work

• Reverse traffic must flow through the load balancer
 load balancer must be in the data path

• NAT is required for IPv4 (SLB44) and IPv6 (SLB66) load balancing

10.0.1.2

10.0.1.1

10.0.0.1 =

10.0.1.1

10.0.1.2

TCP SYN S=U D=10.0.0.1 TCP SYN S=U D=10.0.1.1

TCP SYN S=10.0.1.1 D=UTCP SYN S=10.0.0.1 D=U

L4-7 Load Balancing



23 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Load Balancers – One Arm Mode

Use when the load balancer is not in the forwarding path

• Source (client) and destination (server) IP addresses are translated

• A pool of inside addresses is assigned to the load balancer

• Client address+port is translated into an address+port assigned to LB pool

• Client IP address is no longer available to the server
 Use X-Forwarded-For HTTP header
 Might require SSL offload

10.0.1.2

10.0.1.1

10.0.0.1 =

10.0.1.1

10.0.1.2

L4-7 Load Balancing



24 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Load Balancers – Protocol Translation (SLB64)

Make IPv4 content available to IPv6 clients

• Virtual IP address = IPv6 address

• Server pool = IPv4 or IPv6 addresses

• Source and destination addresses must be in the same address family
 Source NAT is mandatory

10.0.1.2

10.0.1.1

2000:db8::1 =

10.0.1.1

10.0.1.2

L4-7 Load Balancing



26 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Direct Server Return

• Same IP address configured on all hosts (loopback interfaces)

• LAN IP address used for ARP (host MAC address resolution)

• Load balancer rewrites MAC header only

• Unmodified IP packet sent to selected server

• Server sends a reply packet directly to the client

• Requires L2 connectivity between load balancer and servers

Sample product: Linux Virtual Server (LVS)

10.0.1.2

10.0.0.1

10.0.1.1

10.0.0.1

10.0.0.1 =

10.0.1.1

10.0.1.2

TCP SYN S=U D=10.0.0.1 TCP SYN S=U D=10.0.0.1

TCP SYN S=10.0.0.1 D=U

L4-7 Load Balancing



27 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

IPoIP tunnel

Direct Server Return with IP Tunnel

• Same IP address configured on all hosts (loopback interfaces)

• IP tunnels between load balancer and server(s)

• Load balancer encapsulates client IP packets

• Server sends a reply packet directly to the client

• Works with L3 connectivity between load balancer and servers

Sample product: Linux Virtual Server (LVS)

10.0.1.2

10.0.0.1

10.0.1.1

10.0.0.1

10.0.0.1 =

10.0.1.1

10.0.1.2

TCP SYN S=U D=10.0.0.1

TCP SYN S=U D=10.0.0.1

TCP SYN S=10.0.0.1 D=U

L4-7 Load Balancing



28 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Server-Based Network Load Balancers (Microsoft NLB)

• Multiple servers share the cluster 
IP address

• Bridging tricks are used to send the
traffic to all servers

• One of the servers replies to the
packet

6

Cluster

IP-X

MAC-X

IP-A

MAC-A

IP-B

MAC-B

ARP RQ D=IP-X

D-MAC=FFFF

ARP RQ D=IP-X

D-MAC=FFFF

ARP RQ D=IP-X

D-MAC=FFFF

ARP RP MAC=X

S-MAC=B

S=U D=IP-X
S=U/MAC-R

D=IP-X/MAC-X

S=U/MAC-R

D=IP-X/MAC-X

S=U/MAC-R

D=IP-X/MAC-X

S=U D=IP-X

S=IP-X/MAC-B

D=U/MAC-R



29 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Microsoft NLB Caveats

• Performance problems with unknown unicast flooding 

• Routers reject ARP reply with multicast source MAC
 Solve with static ARP

• All servers have to process every incoming packet
 Unnecessary CPU load

• Every incoming packet is flooded to all the servers
Wasted bandwidth

Cluster

IP-X

MAC-X

IP-A

MAC-A

IP-B

MAC-B

S=U D=IP-X
S=U/MAC-R

D=IP-X/MAC-X

S=U/MAC-R

D=IP-X/MAC-X

S=U/MAC-R

D=IP-X/MAC-X



30 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Roadmap

Scale-out web or app servers

Single server solutions

Application-level load balancing

Network-based load balancing mechanisms

Session state management

Scale-out database servers

Multiple data centers



31 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Web Session Management

Some facts first:

• HTTP requests are stateless

• Almost all scripting environments support
sessions – state persistence across HTTP requests

• Session ID in cookie or URL

• Session data in memory or on disk

Session management in scale-out architecture:

• Load balancer with persistent (sticky) sessions 
 Requests from the client are always sent to the same server
 Based on client IP address or session cookie
 Explosion of state on load balancer

• Session data stored in database or key-value store

• Typical solution: memcached



32 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Roadmap

Scale-out web or app servers

Single server solutions

Application-level load balancing

Network-based load balancing mechanisms

Session state management

Scale-out database servers

Multiple data centers



33 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Web Applications: Database Load Balancing

• Single R/W database replica and multiple R/O replicas

• Asynchronous replication (eventual consistency)

• Multiple database connections

• Most scripts access R/O replica(s)

• Solve per-user consistency issues with cookies

Application Load Balancing

Read/Write DB Read-Only DB

Web server

Worker Worker Worker Worker



34 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Roadmap

Scale-out web or app servers

Single server solutions

Multiple data centers



35 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Global Anycast

Same IP address is advertised from multiple data centers

Caveats

• Depends exclusively on Internet routing

• Perfect solution for UDP-based services (DNS)

• Quality of TCP-based services depends on network stability and routing distance 
between data centers

3

Internet

Data Center A Data Center B

www.example.com

10.0.0.1

www.example.com

10.0.0.1



36 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Global DNS-based Load Balancing

DNS responses vary based on user’s location, server load and server availability

Caveats

• Geolocation based on recursive DNS server’s location (not client’s)

• Clients usually (but not always) pick the first IP address in the DNS response

• DNS pinning in browsers limits the usability of this solution

5

Internet

Data Center A Data Center B

www.example.com

10.0.0.1

www.example.com

10.2.0.1

DNS Q: www.example.com

DNS A: 10.0.0.1

DNS Q: www.example.com

DNS A: 10.2.0.1

DNS Q: www.example.com

DNS A: 10.2.0.1



37 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Disaster Avoidance With Load Balancing

Prerequisites

• Public VIP per application in each 
data center

• DNS-based global load balancing

• Synchronization between global
and local load balancing

Process

• Graceful shutdown of
servers in DC A

• Start new servers in DC B

• Load balancers shift load
toward DC B

• No Layer-2 DCI or vMotion required

8

Internet

DCI

A:B = 2:2A:B = 1:3

LB to DC-B

A:B = 0:4



38 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Conclusions



39 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Look Before You Jump

• Design application with scalability in mind

• Test a sample scale-out architecture (and failure handling)

• Deploy scale-out architecture when needed

• Investigate bottlenecks and fix application before deploying 
complex scale-out solutions



40 © ipSpace.net / NIL Data Communications 2012 Scale-Out Web Applications

Questions?

Paperwork issues

• Follow-up email

• Please fill in the evaluation form (waiting in your 

browser)

• Recording available within 24 hours

• PDF materials always available for download

• Discount for future webinars – use wlp10 discount code

• Upgrade to yearly subscription

• Please spread the word!

Send them to ip@ipSpace.net or @ioshints


